

Undergraduate Research Fellowship Programme 2021-22 - Summer Research Internship

Supervised by *Dr. Chan Chi Bun*School of Biological Sciences, Faculty of Science, University of Hong Kong

Relationship between AMPK-dependent BDNF pathway and KLF15 on fatty acid oxidation in skeletal muscle

Introduction

Skeletal muscle is known for its metabolic flexibility in switching myocellular fuels according to various nutritional circumstances [1].

Brain-derived neurotrophic factor (BDNF) is a metabolism-regulating myokine that is upregulated in skeletal muscle after fasting (Fast) to enhance FAO through the TrkB/ERK/AMPK pathway and downregulated after high-fat diet (HFD) due to raised mitochondrial downregulated after high-fat diet (HFD) due to raised mitochondrial burden [1]. Muscle Kruppel-like factor 1s (KLFIs) has been to be metabolically significant in the systemic lipid homeostasis [2]. Studies have shown that Klfis expression level in skeletal muscle increases robustly after Fast [3, 4, 5]. Although the change in Klfis expression after HFD has not been well studied, it is found that a mutation at the zinc-finger binding motif of KLFIs in mice demonstrates resistance to fat gain [6]. It is hypothesized that BDNF pathway induces Klfis expression to control metabolic gene expression in skeletal muscle.

- To explore the possible functional correlation between the BDNF and KLF1s-mediated lipid metabolism in mammalian skeletal muscle, thigh tissue samples from muscle-specific BDNF knockout mice (MBKO) and BDNF-floxed mice (F1/F1) were collected to
- mice (MBKO) and BDNF-floxed mice (F1/F1) were collected to measure the Klf1s expression level.

 To investigate the effect of caloric restriction and high-fat nutrition, six treatment groups (Fed, Fast, and HFD) of female mice (n=4) were studied. Real-time PCR results of the six groups were compared to reveal the relative fold-change in the Klf1s expression level.

Stage II

- Designed to mimic the muscle tissue environment and to study whether BDNF-KLF15 correlation occurs in an autocrine manner in
- C2C12 myoblasts is a glycolytic muscle cell line that was isolated from a female mouse [1].
 To observe the myotube differentiation efficiency, adenovirus mediated BDNF silencing efficiency, intensity of green fluorescence protein, and the Klf1s expression level.

Results

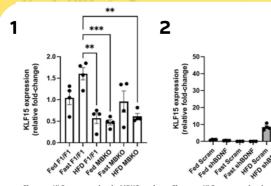


Figure 1. KLF15 expression in MBKO and F1/F1 mice fed with normal chow, fasting, and high-fat diet conditions. (n=4)

Figure 2. KLF15 expression in shBDNF and original C2C12 myotubes under normal medium, fasting and high-fat diet conditions. (n=4)

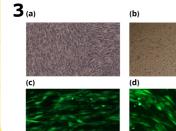


Figure 3(b). 4X microscopic view of one well of C2C12 myotubes at D-8 of differentiation. Figure 3(c), GFP intensity

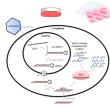
Figure 3(d). GFP intensity and myotube morpholog of C2C12 added with Ad-shBDNF of BDNF.

Methodology

Total RNA Extraction

MBKO and F1/F1 female mice were respectively fed with a chow diet, HFD (3 months) and Fast (24 hrs). RNA concentration and integrity was examined by agarose gel electrophoresis and nano-spectrophotometer.

Forward: ACAGGCGAGAGCCCTT1 Reverse: CATCTGAGCGGGAAAACCT


RT-PCR & real-time PCR

Designed a pair of Klf1s primers according to reference [2]. RT-PCR and real-time PCR were performed to measure the Klf1s and Rpl7 expression levels, where Rpl7 was used as the control due to its housekeeping as the of

C₂C₁₂ cell culture

- C2C12 myotubes treated with DMEM feeding medium & horse serum differentiation medium.
 Ad-shBDNF added at day-s of differentiation
- (Ad-Scram as control)
- Hank's balanced salt solution (HBSS) and palmitic acid (PA) added 6 hours and 24 hours respectively to mimic Fast and HFD conditions.

Discussion

<u>I. Effect of MBKO, caloric restriction, and high-fat diet on Klf1s expression</u>

BDNF-knockout

- Klf1s expression was generally downregulated when in Fed and Fast MBKO, but not in HFD (Fig. 1).
- The difference in Klf15 expression in F1/F1 and MBKO mice suggests that there is a correlation between the BDNF and KLF15 pathways in skeletal muscle.

- -Among F₁/F₁ and MBKO mice, fasting upregulated the Klf₁s expression for a +_{0.5} relative fold-change, coherent to [3, 4, 5].
 Compensated expression in Fast MBKO suggests that there was a combined effect of BDNF-knockout and Fast.

Downregulated Klf1s expression, yet the same pattern was not observed among the MBKO pair. Resemblance between KLF1s and BDNF in response to HFD [1].

II. Different patterns observed in C2C12 myotubes

BDNF-silencing ('shBDNF')

- Downregulated Klf15 expression after Fed (Fig. 2).
 Inconsistency in Fast and HFD groups.

- Soing

 Downregulated Klf1s expression (unpaired t-test).

 KLF1s acts collaboratively in liver and skeletal muscle [5]: extremely low Klf1s expression in muscle solo play in vitro

High-fat diet

- On the contrary, 10-fold upregulated in HFD Scram and 40-fold upregulated in HFD shBDNF.
 HFD and shBDNF have a synergistic effect.
- KLF's FAO machinery.
 BDNF role in suppressing KLF15 in preventing mitochondrial

Conclusion
This experiment involves collecting thigh tissues from BDNF F1/F1 and MBKO mice, which were treated with chow diet, fasting, and high-fat diet, and measuring the Klf1s expression level using RT-PCR and real-time PCR. Klf1s was downregulated by BDNF-knockout and HFD effect but upregulated by Fast. While the results showed inconsistency in C2C12 myotubes in vitro set-up, the results can only draw a conclusion on the correlation between the AMPK-ACCB-PPARy- pathway of BDNF and KLF1s-PPARa-regulated metabolic pathway in carrying out FAO functions but not the autocrine manner of hormone. Further research is proposed to work on downstream elements in the crosstalk.

Acknowledgement

References Thanks to HKU Foundation and the Faculty of